Descrizione dell'insegnamento |
Si tratta di una classica materia ingegneristica di base, che studia l’energia, il suo trasferimento, la sua conversione e il suo degradarsi. La Fisica Tecnica sviluppa ed approfondisce a livello applicativo alcuni principi generali della fisica e per i suoi contenuti costituisce la base culturale di molte materie di specializzazione. Fornisce le basi indispensabili per i corsi riguardanti le macchine a fluido, gli impianti ed i processi termici. |
Calcolo e algebra lineare, Fisica |
Il corso fornisce agli allievi i fondamenti metodologici e applicativi della termodinamica e della trasmissione del calore. Al termine del corso, l’allievo deve essere capace di comprendere, interpretare e utilizzare i modelli termodinamici necessari all’identificazione, alla formulazione e alla soluzione di problemi relativi a sistemi e processi caratterizzati da interazioni energetiche con l’ambiente esterno. In particolare, l’allievo deve esser in grado di analizzare componenti termodinamici, di identificarne le principali caratteristiche e di operare una scelta tra differenti opzioni e sistemi. Contemporaneamente il corso fornisce le conoscenze specifiche per la progettazione di particolari tipi di impianti e componenti: impianti di riscaldamento e condizionamento, scambiatori di calore. |
TERMIDINAMICA - Concetti e definizioni di base, sistemi e proprietà termodinamiche, equilibrio termodinamico, trasformazioni. Prima e seconda legge della termodinamica; bilanci di massa, energia, ed entropia per sistemi chiusi ed aperti. Alcune conseguenze della prima e della seconda legge della termodinamica: equazioni di Gibbs; lavoro di variazione di volume nei sistemi chiusi; equazione dell’energia meccanica; calori specifici; irreversibilità. Termodinamica degli stati: introduzione; superficie caratteristica; piani termodinamici (p, T), (p, v), (T, s), (h, s), (p, h); gas ideali; vapori surriscaldati; liquidi; miscele bifasiche liquido-aeriforme; solidi. TRASMISSIONE DEL CALORE - Concetti introduttivi: meccanismi di scambio termico; enunciati delle leggi di conduzione irraggiamento e convezione. Irraggiamento termico: generalità; definizioni di base; modello del corpo nero; caratteristiche radiative delle superfici; fattore di configurazione geometrica; scambio termico radiativo in cavità costituite da due superfici grigie. Convezione: generalità; flusso laminare e turbolento; viscosità; concetto di strato limite; gruppi adimensionali per la convezione forzata (definizione, significato fisico); gruppi adimensionali per la convezione naturale (definizione, significato fisico); uso delle correlazioni per la valutazione della conduttanza convettiva unitaria media, in condizioni di regime stazionario. Conduzione: legge di Fourier; scambio termico per conduzione in regime stazionario monodimensionale (simmetria piana e cilindrica); transitorio termico (regime non stazionario) per sistemi a Biot < 0,10. COMPONENTI DI SISTEMI TERMODINAMICI - introduzione; generalità sulle macchine a fluido dinamiche; turbine a vapore; turbine a gas; pompe; compressori; scambiatori di calore; valvole di laminazione, condotti. ELEMENTI DI ILLUMINOTECNICA - grandezze fotometriche; sensazioni luminose e benessere visivo; elementi di colorimetria; illuminazione naturale e artificiale. FONTI RINNOVABILI DI ENERGIA - uso razionale dell’energia; produzione combinata di energia elettrica e termica- cogenerazione. IMPIANTI DI VENTILAZIONE E TERMOVENTILAZIONE. IMPIANTI DI CONDIZIONAMENTO - trasformazioni dell’aria umida; classificazione degli impianti. |
Il principale sussidio didattico è costituito dalle video lezioni. Testi consigliati per lo studio sono: A. Cesarano, P. Mazzei. Elementi di termodinamica applicata, Liguori, Napoli, 1989. R. Mastrullo, P. Mazzei, R. Vanoli. Termodinamica per ingegneri - Applicazioni, Liguori editore, Napoli, 1996. R. Mastrullo. P. Mazzei, V. Naso, R. Vanoli. Fondamenti di trasmissione del calore, vol. I e II, Liguori editore, Napoli, 1990. |
Gli esercizi consisteranno in applicazioni dei concetti e delle leggi studiati durante il corso. In particolare si cercherà di analizzare i differenti componenti termodinamici e di identificarne le principali caratteristiche, nonché di studiare lo scambio termico tra sistemi a differenti temperature Per superare l’esame è prerequisito fondamentale saper risolvere autonomamente esercizi dello stesso genere di quelli proposti nel corso e nelle erogazioni. |
Docente/Tutor Responsabile insegnamento |
Prof.
Pietro Mazzei
- Università di Napoli "Federico II" (Napoli - Italia)
|